

DataMasker

Knowledge Base

Install and Setup Data Masker

FAQ

Setup Assistant

Track masking progress with the custom field ‘Masking Status’ (Optional)

Installing the DataMasker application

Get an Unlimited License (Optional)

Migration from Salesforce Data Mask to Cloud Compliance DataMasker (Optional)

Configure Masking Mapping

Create Masking Configuration

Specify Object & Field Masking

Start Masking Records

Monitor Masking Performance

Advanced Configuration: Dealing with large data set (LDV)

Apex Action Masking

Data Masking Using Action – Formula Field

Considerations for Person Account Org

Considerations for Shield Org

Reactivate Automations

Automate Post Refresh

Step 1: Update Custom Labels with Post Refresh Activities

Step 2: Update Remote Site Setting with Post Refresh Activities

Integrate - APIs & DevOps

Step 1: Run DataMasker from 3rd Party Tools via REST API

Step 2: Run DataMasker from DevOps – Copado

Go-live-Data Masking

Data Masker -Import/Export Wizard

Troubleshooting DataMasker

What's New in Data Masking

Release Notes 1.28.5 (May 2023)

Release Notes 1.28.4 (Jan-2023)

Release Note 1.27.1 (Sep-2022)

Release Note 1.26 (Jul-2022)

Release Note 1.24 (May-2022)

Release Note 1.23 (Feb-2022)

Release Note 1.22 (Dec-2021)

Release Note 1.21 (Sep-2021)

Install and Setup Data Masker

FAQ

Is DataMasker Free?

Yes. DataMasker is FREE for life for up to 4 objects. You can mask millions of records at a

blazing-fast speed for $0. The installation is easy with the setup wizard handholding you at every

step. And if you get stuck or need support, then contact us through the website chat. We are here

to make sure you are successful with your Salesforce Sandbox masking needs.

What are the steps to deploy DataMasker?

Can DataMasker run in PROD (I hope NOT 🤞)

DataMasker is deployed in PROD so that it gets copied into every refreshed sandbox org. To

ensure that DataMasker NEVER runs in a PROD Salesforce Org, we have constraints built into

it.

DataMasker uses Salesforce standards-based approach(isSandbox) when masking is initiated. It

only runs if it detects that the Org is a Dev or a Sandbox Org.

No matter how masking is initiated – By clicking the ‘Run Masking’ Button or through the

APEX or REST API – DataMasker will NOT run in a PROD org.

Appended is a screenshot of the error users will see in case masking is triggered in PROD from

the button ‘Run Masking’.

Appended is the REST response indicating that DataMasker execution is prohibited in

Production Org.

Installing The DataMasker Application
Step 1: Search for DataMasker

Navigate to the DataMasker listing on AppExchange. Here is the LINK

Step 2: Install DataMasker

To install the application, click on the Get It Now button.

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3u00000OO2JKEA1

Step 3: Add Installation Details

– Key in the Installation Key (Contact Cloud Compliance Team at info@cloudcompliance.app)

– Select the option Install for Admins Only

Note – User can confirm completion of installation by going to Setup -> Deployment Status

Setup Assistant

This article covers the use of the DataMasker Setup Assistant to configure the org and run the

DataMasker application. Once you switch to the DataMasker application, you will automatically

be navigated to the Setup Assistant tab. This tab will help you set up and configure the

application and allow you to create a sample configuration.

Step 1: Assign Permissions Set

• You can assign DataMasker System Administrator permissions to a user with System

Administrator or an equivalent profile.

• Click on the link labeled ‘here’ to navigate to the permission set assignment. Here, you

can see the ‘DM System Admin’ permission set that can then be assigned.

Assign the permission set ‘DM System Admin’.

Click on the Save button.

Note – For more information on permission sets, you can navigate to a different knowledge base

article titled, “Assign Permission Sets to your Profile”.

For more information, click here.

• After assigning the Permission set, you can click on “Verify” on the Home page of the

Setup Assistant to check that the permission set has been successfully assigned.

• After clicking on “Verify”, a green tick will appear that indicates that the Permission Set

has been assigned successfully

• If you assigned the DM System Admin permission set directly without navigating from

the Setup Assistant page, just refresh the page to see the green marker appear as shown

above.

To perform Data Masking, you’ll need 3 additional permissions:

I. Bulk API Hard Delete (User can find System Permission in Permission Set)

II. Query all Files (User can find App Permission in Permission Set)

III. View & Edit Converted Leads (User can find App Permission in Permission Set)

You’ll need to assign these through an already existing permission set or by creating a new

Permission Set.

For more information, click here.

• As mentioned in Step 1, after assigning the permissions you can click on “Verify” to

check whether the permission set has been assigned correctly.

• After clicking on the Verify button user will see a green tick that shows Permission Set

has been assigned successfully.

• Suppose the user has given these three permissions directly without navigating from the

Setup Assistant page. Then the user needs just to Refresh the page and will see the Green

tick will appear automatically as shown above.

Step 3: Assign Object Masking Page Layouts

Data Masker offers different page layouts for ‘Masking’ and ‘Deletion’.

The ‘Masking Page Layout’ is used to add field masking, whereas the ‘Deletion Page Layout’ is

used to delete records.

To assign an Object Masking Page Layout click on the link ‘here’ as seen. It will redirect you to

the Page Layout Assignment screen.

For more information about page layout assignments, click here.

• After assigning the layouts, click “Mark as Completed”.

• Now, the green tick should be displayed showing that you have assigned the Object

Masking Page Layouts successfully.

Step 4: Assigning ‘Pattern’ Page Layouts

DataMasker also offers a page layout for pattern objects. To set the page layout for pattern

objects, users have to click the link and follow the same steps as above and select the appropriate

pattern page layout for pattern object record types as shown in the below image.

Once clicking on the ‘Mark as Complete’, a green tick will appear and show ‘The user has

assigned Pattern Page Layouts successfully’.

Step 5: Get a Sample Masking Configuration

Data Masker comes with a sample configuration for Accounts & Contacts.

Click on “Create Configuration” to get started with the sample configuration. If you know how

to create a configuration, you can click directly on ‘Mask as Completed’ and skip the entire

process.

When you click on ‘Create Configuration’, a popup will appear displaying ‘Sample

Configuration Created Successfully’. This will create a sample configuration of Accounts &

Contacts Object Masking Records and some sample Field Masking Records.

Step 6: View Masking Configurations

To view the Sample Configuration or to create a new configuration click on ‘Take me there’.

Click on the ‘Take me there‘

This link will directly take you to the Configuration page where the Sample Configuration has

already been created.

Click on the Configuration name

In the Object Masking section, some sample object masking records should already be there. If

you want to add some additional object masking records, then click on the ‘New’ button.

On the Contact Object Masking, some sample field records are provided. If you want to add

some additional field masking records, then click on the ‘New’ button.

Track Masking Progress With The Custom

Field ‘Masking Status’ (Optional)
It is important to track if all the records did mask after the masking operation is complete. The

recommended way to track this is by adding a custom field ‘Masking Status’ on each of the

objects that are being masked. All the records that are successfully masked will be set with the

value ‘Masked’ by DataMasker. Any record with the ‘Masking Status’ = NULL is not masked.

This field helps in re-trying masking failures and also helps in troubleshooting.

Adding the custom field ‘Masking Status’ on each of the Objects being masked is highly

recommended.

Overview

1. Create a custom field ‘Masking Status’

2. Add ‘Masking Status’ to each of the ‘Object Masking’ records

Step 1: Create a custom field ‘Masking Status’

Add Custom Field ‘Masking Status’ to each of the Object that is being masked.

Navigate → ‘Object Manager’ and Select the object in which you need to add a field.

Navigate -> ‘Fields and Relationships’, and click on ‘New’

– Select Data Type Picklist

– Click on Button ‘Next’

Key in the field details:

-Field Label: ‘Masking Status’

-Values: Select ‘Enter values, with each value separated by a new line ‘

Enter Value: Masked

Click on Button ‘Next’

Select ‘Visible’ for each of the profiles under which DataMasker will run.

Click ‘Next’

– Unselect all of the Page Layout

– Click on the button ‘Save’

Step 2: Add ‘Masking Status’ to each of the ‘Object Masking’ records

– Navigate to the DataMasker App

– Configurations tab

– Click on the Configuration Name

– Click on the Object. Example ‘Contact’ in the screenshot below

Click on the button ‘Edit’

Update value of field ‘Filter Criteria’

masking_status C = NULL

Click on the Button ‘Save’

Add ‘Masking Status’ to Field Masking

– Click on the button ‘New’

Enter details of this new field

– Select Action: ‘Replace’

– Select Further Action: ‘Hardcoded Value’

– Select Field: ‘Masking Status’

– Select Value: ‘Masked’

Click on the button ‘Save’

Masking Status Field should show under Field Maskings as below

Repeat adding the custom field ‘Masking Status’ to all the remaining Objects that are being

masked.

Get an Unlimited License (Optional)

DataMasker offers a complimentary trial period of one month to its users. During this trial, users are able

to mask an unlimited number of objects. However, once the trial period comes to an end, the license will

expire. When you install the DataMasker application from AppExchange, you’ll be able to view the

license in the license details section. In order to continue using DataMasker beyond the trial period, users

will need to contact info@cloudcompliance.app to obtain the necessary license.

Once you have the Unlimited License, there are two ways to install it on your Salesforce Org.

1. Over The Air Licenses Sync

Prerequisite: You’ll have to create a Remote Site URL in your own org. You’ll also need to contact Cloud

Compliance to ensure that your license has been successfully activated in the Cloud Compliance licensing

server. Once the prerequisites have been met, navigate to the ‘License’ tab, then click ‘OTA Licenses

Sync’.

You’ll see a license with the status “Active”.

https://cloudcompliance.app/docs/datamasker/install-datamasker/get-datamasker-license-for-paid-version-only-2/
mailto:info@cloudcompliance.app

The license start date and end date can be seen in the license detail records.

2. Validate Key

Prerequisite: You’ll need to contact Cloud Compliance to receive your Encrypted License Key

Click on the ‘License' Tab, then enter the key provided by Cloud Compliance and click on ‘Validate

Key’. You will see a license record with the status 'Active'. If the Start Date is in the future, then the

status will display as 'Upcoming'.

public class DataMaskerMigrationScript {

public static void migrate(){

Set<String> objectsWithNonBulkApi = new Set<String>{‘User’, ‘Attachment’};

Map<String, Schema.SObjectType> schemaMap = Schema.getGlobalDescribe();

Map<String, pcldm Configuration c> mapOfSourceIdToConfiguration = new Map<String,

pcldm Configuration c>();

for(datamask DataMask_Configuration mdt conf : [select id, MasterLabel,

datamask Anonymize_Case_Comments c, datamask Delete_Chatter c,

datamask Delete_Email c,

datamask Notes c from datamask DataMask_Configuration mdt]){

pcldm Configuration c c = new pcldm Configuration c();

c.Name = conf.MasterLabel;

c.pcldm Description c = ‘Automatically imported configuration from SFDC DM.’;

c.pcldm Chatter c = conf.datamask Delete_Chatter c;

c.pcldm Emails c = conf.datamask Delete_Email c;

if(!mapOfSourceIdToConfiguration.containsKey(conf.Id)){

mapOfSourceIdToConfiguration.put(conf.Id, c);

}

}

Migration From Salesforce Data Mask To

Cloud Compliance DataMasker (Optional)
Migrating from Salesforce Data Mask to DataMasker is simple. We have an Apex script that

does the job. The migration process must be executed in the Sandbox org where both Salesforce

Data Mask and Cloud Compliance DataMasker are installed. Here are the steps to migrate

1. Create Apex Class

Login to the Salesforce sandbox org where Salesforce Data Mask and Cloud Compliance

DataMasker is installed. Navigate to Setup->Custom Code->Apex Classes and click the ‘New’

button. Copy & Paste the appended code. And save the Apex class.

if(!mapOfSourceIdToConfiguration.isEmpty()){

insert mapOfSourceIdToConfiguration.values();

Set<String> nonMaskingObjects = new Set<String>();

for(pcldm DM_App_Config mdt mdt : [SELECT Id, pcldm Value c FROM

pcldm DM_App_Config mdt WHERE pcldm Module_Name c =

‘ObjectMaskingUnselectable’]){

nonMaskingObjects.add(mdt.pcldm Value c);

}

Map<String, pcldm Object_Masking c> mapOfKeyToObjectMasking = new Map<String,

pcldm Object_Masking c>();

Map<String, Map<String, Schema.SObjectField>> mapOfObjectNameTofieldMap = new Map<String,

Map<String, Schema.SObjectField>>();

for(datamask Masking_Object mdt obj : [select id, datamask API_Name c,

datamask DataMask_Configuration c, datamask Where_Criteria_LT c

FROM datamask Masking_Object mdt

WHERE datamask DataMask_Configuration c IN :mapOfSourceIdToConfiguration.keySet()

AND datamask API_Name c NOT IN :nonMaskingObjects]){

String key = obj.datamask DataMask_Configuration c +’~’+ obj.datamask API_Name c;

if(schemaMap.containsKey(obj.datamask API_Name c) &&

mapOfSourceIdToConfiguration.containsKey(obj.datamask DataMask_Configuration c) &&

!mapOfKeyToObjectMasking.containsKey(key)){

pcldm Object_Masking c o = new pcldm Object_Masking c();

o.pcldm Active c = true;

o.Name = schemaMap.get(obj.datamask API_Name c).getDescribe().getLabel();

o.pcldm Batch_Size c = 2000;

o.pcldm Configuration c =

mapOfSourceIdToConfiguration.get(obj.datamask DataMask_Configuration c).Id;

o.pcldm Filter_Criteria c = obj.datamask Where_Criteria_LT c;

o.pcldm Group c = ‘1’;

o.pcldm Object_API c = obj.datamask API_Name c;

o.pcldm Object_Label__c = schemaMap.get(obj.datamask API_Name__c).getDescribe().getLabel();

o.pcldm Sequence c = 10;

o.pcldm Use_Bulk_Api c = true;

o.RecordTypeId =

Schema.SObjectType.pcldm Object_Masking c.getRecordTypeInfosByDeveloperName().get(‘Mask

_Records’).getRecordTypeId();

if(objectsWithNonBulkApi.contains(o.pcldm Object_API c)){

o.pcldm Use_Bulk_Api c = false;

o.pcldm Batch_Size c = 200;

}

mapOfKeyToObjectMasking.put(key, o);

if(!mapOfObjectNameTofieldMap.containsKey(o.pcldm Object_API c)){

mapOfObjectNameTofieldMap.put(obj.datamask API_Name c,

schemaMap.get(obj.datamask API_Name c).getDescribe().fields.getMap());

}

}

}

if(!mapOfKeyToObjectMasking.isEmpty()){

insert mapOfKeyToObjectMasking.values();

//map of SF-DM to CC-DM pattern mappings

Map<String, String> mapOfSourceToTargetPattern = new Map<String, String>{

‘First Name’ => ‘First Name-List’,

‘Last Name’ => ‘Last Name-List’,

‘Company Name’ => ‘Account Name-List’,

‘Email’ => ‘Email-Regex’,

‘Street’ => ‘Street Address-List’,

‘City’ => ‘City-List(US)’,

‘State’ => ‘State-List(US)’,

‘Postal Code’ => ‘Postal Code-Regex(US)’,

‘Postal Code (Canada)’ => ‘Postal Code-Regex(US)’,

‘Country’ => ‘Country Name-List’,

‘Phone N/A’ => ‘Phone-Regex(US)’,

‘Social Security No’ => ‘SSN-Regex(US)’,

‘Social Security No Values’ => ‘SSN-Regex(US)’,

‘Country (abbr)’ => ‘Country ISO Code-List’,

‘Full Name’ => ‘First Name-List’

};

Map<String, pcldm Pattern c> mapOfDmPatternNameToPattern = new Map<String,

pcldm Pattern c>();

for(pcldm Pattern c p : [SELECT Id, Name, pcldm Type c FROM pcldm Pattern c]){

mapOfDmPatternNameToPattern.put(p.Name, p);

}

List<datamask Masking_Field mdt> lstOfFieldMaskings = [SELECT Id,

datamask API_Name__c, datamask Custom_Pattern c, datamask Field_Length c,

datamask Field_Type__c, datamask Masking_Category c, datamask Masking_Object c,

datamask Masking_Type c,

datamask Pattern_Data c, datamask Required c, datamask Unique c,

datamask Masking_Object r.datamask API_Name c,

datamask Masking_Object r.datamask DataMask_Configuration c

FROM datamask Masking_Field mdt

WHERE datamask Masking_Object r.datamask DataMask_Configuration c IN

:mapOfSourceIdToConfiguration.keySet()

AND datamask Masking_Object r.datamask API_Name c != ‘User’];

Map<String, pcldm Pattern c> mapOfPatternsToInsert = new Map<String, pcldm Pattern c>();

for(datamask Masking_Field mdt fm : lstOfFieldMaskings){

if(fm.datamask Masking_Type c == ‘Patternize’ &&

String.isNotBlank(fm.datamask Custom_Pattern c) &&

!mapOfDmPatternNameToPattern.containsKey(fm.datamask Custom_Pattern c)){

pcldm Pattern c p = new pcldm Pattern c();

p.Name = fm.datamask__Custom_Pattern c;

p.RecordTypeId =

Schema.SObjectType.pcldm Pattern c.getRecordTypeInfosByDeveloperName().get(‘Regex’).getRe

cordTypeId();

p.pcldm Data_Type c = ‘Text’;

p.pcldm Type c = ‘Regex’;

p.pcldm Value c = parsePattern(fm.datamask__Custom_Pattern c);

mapOfPatternsToInsert.put(p.name, p);

}

}

if(!mapOfPatternsToInsert.isEmpty()){

insert mapOfPatternsToInsert.values();

for(pcldm Pattern c p : mapOfPatternsToInsert.values()){

mapOfDmPatternNameToPattern.put(p.Name, p);

}

}

List<pcldm Field_Masking c> lstOfFieldMaskingToInsert = new

List<pcldm Field_Masking c>();

for(datamask Masking_Field mdt fm : lstOfFieldMaskings){

String key =

fm.datamask Masking_Object r.datamask DataMask_Configuration c+’~’+fm.datamask Maski

ng_Object r.datamask__API_Name c;

if(mapOfKeyToObjectMasking.containsKey(key) &&

mapOfObjectNameTofieldMap.containsKey(fm.datamask Masking_Object r.datamask API_Nam

e c)){

Map<String, Schema.SObjectField> mapOffieldDescribes =

mapOfObjectNameTofieldMap.get(fm.datamask Masking_Object r.datamask API_Name c);

if(mapOffieldDescribes.containsKey(fm.datamask API_Name c)){

Schema.DescribeFieldResult dfield =

mapOffieldDescribes.get(fm.datamask API_Name c).getDescribe();

pcldm Field_Masking__c f = new pcldm Field_Masking c();

f.pcldm Active c = true;

f.pcldm Field_API c = fm.datamask API_Name c;

f.pcldm Field_Label c = dfield.getLabel();

f.Name = dfield.getLabel();

f.pcldm Field_Type c = String.valueOf(dfield.getType());

f.pcldm Unique c = false;

f.pcldm Object_Masking c = mapOfKeyToObjectMasking.get(key).Id;

if((f.pcldm Field_Type c == ‘TEXTAREA’ || f.pcldm Field_Type c == ‘STRING’) &&

fm.datamask Unique c){

f.pcldm Unique c = true;

}

f.pcldm Action c = ‘Replace’;

if(fm.datamask Masking_Type c == ‘Delete’){

f.pcldm Action c = ‘Erase’;

}else if(fm.datamask Masking_Type c == ‘Anonymize’){

f.pcldm Further_Action c = ‘Random’;

f.pcldm Value c = ‘Auto-Generated’;

}else if(fm.datamask Masking_Type c == ‘Patternize’){

if(String.isNotBlank(fm.datamask Custom_Pattern c) &&

mapOfDmPatternNameToPattern.containsKey(fm.datamask Custom_Pattern c)){

pcldm Pattern c ptrn = mapOfDmPatternNameToPattern.get(fm.datamask Custom_Pattern c);

f.pcldm Further_Action c = ‘Pattern – ‘+ptrn.pcldm Type c;

f.pcldm Pattern c = ptrn.Id;

f.pcldm Value c = ptrn.Name;

}else{

f.pcldm Further_Action c = ‘Random’;

f.pcldm Value c = ‘Auto-Generated’;

}

}else{

if(String.isNotBlank(fm.datamask Masking_Category c) &&

mapOfSourceToTargetPattern.containsKey(fm.datamask Masking_Category c)){

String dmPattern = mapOfSourceToTargetPattern.get(fm.datamask Masking_Category c);

if(String.isNotBlank(dmPattern) && mapOfDmPatternNameToPattern.containsKey(dmPattern)){

pcldm Pattern c ptrn = mapOfDmPatternNameToPattern.get(dmPattern);

f.pcldm Further_Action c = ‘Pattern – ‘+ptrn.pcldm Type c;

f.pcldm Pattern c = ptrn.Id;

f.pcldm Value c = ptrn.Name;

}else{

f.pcldm Further_Action c = ‘Random’;

f.pcldm Value c = ‘Auto-Generated’;

}

}else{

f.pcldm Further_Action c = ‘Random’;

f.pcldm Value c = ‘Auto-Generated’;

}

}

lstOfFieldMaskingToInsert.add(f);

}

}

}

List<pcldm Object_Masking c> lst = [select id FROM pcldm Object_Masking c WHERE

pcldm object_Api c = ‘User’

AND Id IN :mapOfKeyToObjectMasking.values()];

if(lst != null && !lst.isEmpty()){

for(pcldm Object_Masking c obj : lst){

pcldm Field_Masking__c f = new pcldm Field_Masking c();

f.pcldm Active c = true;

f.pcldm Field_API c = ‘isActive’;

f.pcldm Field_Label c = ‘Active’;

f.Name = ‘Active’;

f.pcldm Field_Type c = ‘BOOLEAN’;

f.pcldm Unique c = false;

f.pcldm Object_Masking c = obj.Id;

f.pcldm Action c = ‘Replace’;

f.pcldm Further_Action c = ‘ Hardcoded Text’;

f.pcldm Value c = ‘false’;

lstOfFieldMaskingToInsert.add(f);

}

}

if(!lstOfFieldMaskingToInsert.isEmpty()){

insert lstOfFieldMaskingToInsert;

}

}

}

}

public static String parsePattern(String pattern){

while(pattern.containsIgnoreCase(‘%%’)){

pattern = pattern.replace(‘%%’, ‘[percent]’);

}

String currentPattern = ”;

Boolean patternRunning = false;

for(Integer i = 0; i < pattern.length(); i++){

String currentChar = pattern.substring(i, i+1);

if(currentChar == ‘%’){

patternRunning = true;

}else if(currentChar == ‘d’ && patternRunning){

patternRunning = false;

String randomInt = ‘[1-9]{‘+Integer.valueOf(currentPattern)+’}’;

pattern = pattern.substring(0, (i-1-currentPattern.length()))+randomInt+pattern.substring(i+1,

pattern.length());

currentPattern = ”;

}else if(currentChar == ‘c’ && patternRunning){

patternRunning = false;

String randomStr = ‘[a-z]{‘+Integer.valueOf(currentPattern)+’}’;

pattern = pattern.substring(0, (i-1-currentPattern.length()))+randomStr+pattern.substring(i+1,

pattern.length());

currentPattern = ”;

}else if(patternRunning){

currentPattern += currentChar;

}

}

while(pattern.containsIgnoreCase(‘[percent]’)){

pattern = pattern.replace(‘[percent]’, ‘%’);

}

2. Run Execute Anonymous

Navigate to the developer console. Select Debug->Open Execute Anonymous Window. Copy &

Paste the appended code and hit the ‘Execute’ Button

DataMaskerMigrationScript.migrate();

3. Verify the Migrated Configuration

The migration script will create a new configuration in DataMasker, the name of this

configuration will be the same as the one in Salesforce Data Mask. Verify this configuration and

if it looks good, you are ready to test masking your sandbox.

return pattern;

}

}

Configure Masking Mapping

Create Masking Configuration
To add objects and fields for the masking process, you’ll need to create at least one

Configuration.

Step 1: Navigate to the ‘Configuration’ tab. Click on ‘New’.

Step 2: Enter a configuration name. We also recommend entering a description, but this is

optional.

You will also see the ‘Retry Count’ field on this screen. It is used to repeat the execution of

DataMasker if an error has occurred while processing. It is a numeric field with an initial value

of 0. If all the records are processed successfully and the status displays as “Completed” in the

first execution, no additional executions will be performed. Retry Execution also gets updated in

the current execution, no new execution will be created.

Step 3: Check all of the boxes in the ‘Delete Settings’ section. [If you select any activity in

‘Delete Settings’, the records of that activity will be deleted after the data masking execution

completes.]

After setting up all Delete Settings, click on ‘Save’.

https://cloudcompliance.app/docs/datamasker/configure-datamasker/create-masking-configuration/

Advanced Configuration

The ‘Advanced Configuration’ section offers two distinct features: ‘Notify Users’ and ‘Activate

Users’.

1. Notify Users:-

The ‘Notify Users’ feature allows users to get notifications after the successful execution of a

masking batch. Simply add the username of any user who should be notified.

To add multiple usernames, separate each username with a comma.

• After batch execution is complete, notifications will appear at the bell icon.

2. Activate User:-

When you create, refresh, or clone a sandbox, user email addresses are modified in your sandbox

so that production users don’t receive automatically generated email messages from the sandbox.

In your modified sandbox, user email addresses will now be appended with “.invalid”. If you

want to activate these users, you need to input the user’s Email ID here. As a result, the

“.invalid” is removed.

3. Retry Count:-

Whenever any execution log errors out or the execution contains error records then those records

will be retried again. The Retry Count will be specified in this field.

It should be more than 0. The retry frequency will be defined based on the count mentioned in

this field. For e.g. If Retry Count is 1, and the main execution contains an error record or any of

the execution logs shows the status as Errored, then it will be retried once.

Specify Object & Field Masking

Overview :

To achieve scalability and high performance, you can split records of the same objects into

different chunks.

For example, the Contact object contains 18 million records distributed evenly over three years.

Suppose we then decide to split the Contact object into three unique mappings – this means that

each mapping will now have six million records. This split allows the processing of all three

batches of six million records simultaneously instead of processing one contact masking batch

containing all 18 million records.

Solution :

After the creation of the Configuration record, you need to add objects and fields to the object

masking and field masking records.

The following steps cover how to create these object-masking and field-masking records.

Object Masking

Step 1: Navigate to the ‘Configuration’ tab

Click on the ‘Configuration’. You will now see all of the configurations that you have created.

Step 2: Navigate to the ‘Object Masking’ section

Click on any configuration record and scroll down to the ‘Object Masking’ section.

Step 3: Create an Object Masking record

Click the ‘New’ button to add an Object Masking record.

You will then be prompted to select a record type: ‘Delete Records’ or ‘Mask Records’

Delete Records: If you want to delete records, select the ‘Delete Records’ button and click

‘Next’. By doing this, the Delete Records Page Layout will display.

https://cloudcompliance.app/docs/datamasker/configure-datamasker/specify-object-field-masking/

Mask Records: If you want to mask records, then select the “Mask Records” radio button. By

clicking on this, the Mask Records Page Layout will display.

Select an Object and determine Group, Sequence, Batch Size, and Filter Criteria, then select the

‘Use Bulk API’ checkbox. This allows you to process records in bulk and improve masking

performance.

• Group

The Group criteria decide on masking priority. That means objects that are added in Group 1 will

be masked first, followed by objects in Group 2, and so on up to Group 10. You can add an

unlimited amount of objects in a single Group and put Standard as well as Custom Objects in the

same Group or a different Group

• Sequence

The Sequence criteria work within different Groups. The Sequence criteria allow you to decide

the priority for an object to be masked within a Group. For example – an object which has a

Sequence value of 1 will be masked first, and so on for an infinite number of values. Manually,

you may set as many sequences in a single group on both Standard and Custom Objects.

• Batch size

The Batch Size determines the number of records that should be processed in a single batch. You

can set it from a minimum value of 1 to a maximum of 2000 records.

• Filter Criteria

You can use the Filter Criteria to filter records based on your own criteria. Everything that can fit

into the SOQL WHERE clause can also fit into the Filter Criteria. Logical operators, Literals,

LIMIT, and others can be utilized.

Here’s an example of how to mask all active Contacts with the record type of ‘Partner’ and

where the Partner is based in the ‘United Kingdom’.

Step 4: Save your changes

Click on ‘Save’. Likewise, you can create multiple records of object masking with different

groups and sequences.

Field Masking

Step 4.1: Pick an Object

Click on the Object name for which the user wants to add Field masking. You will be redirected

to the field masking component which allows adding multiple fields simultaneously.

Step 4.2: Choose Fields

Here users can select multiple fields at a time. Also, the user can specify the action which needs

to be implemented for masking the field. To achieve this user

needs to select the fields by clicking the checkbox. Then further select ‘Action’,’ Replace with’,

and ‘Replacing Value’.

Actions: – User can select two actions by clicking the dropdown –

1. Erase: To erase the field values.

2. Replace: To replace the field values with another value from the option provided by

DataMasker.

If you select Erase, select the field from the dropdown list and click ‘Save’. This function is used

to erase the field (e.g. name, number, email, address, etc.)

Note – Never add mandatory fields under erase action.

If you select Replace, select one of the following further actions:

I. Random: Replace with randomized(autogenerated) text/string.

II. Hardcoded: Replace with a hardcoded string.

III. Pattern: Replace with a custom list or Regex.

IV. Apex: Replace with specific characters.

Hardcoded Value: Hardcoded values are values where you can add any hardcoded text/string to

replace the actual value with chosen one.

Select the field where you want to apply masking to and click ‘Save’. Repeat this until desired

field maskings are set up.

Enter any String in the ‘Enter Value’ textbox field by which you want to hardcode the selected

field. Make sure the value entered in the textbox is of the same data type of the field selected for

masking.

In the following example, the output of the Account Description will be Hardcoded Value.

A Pattern – Custom List: – While selecting ‘Pattern – Custom List’ from further actions,

choose the value by which you want to replace the selected field by using patterns.

A Pattern – Custom List can be any combination of items or names from the default list or the

lists created by the users.

Pattern – Regex:- While Selecting ‘Pattern – Regex’ from further actions, choose the value by

which you want to replace the selected field by using patterns from your sandbox (e.g. email,

phone number, etc.).

You can also add your own Masking Pattern.

Random:- While selecting ‘Random’ from further actions, choose the field by which you want

to replace the selected field with a Random text/string.

Apex:- While selecting ‘Apex’ from further actions, choose the field by which you want to

replace the selected field with Apex texts/strings. For more information about Apex text strings,

read this article.

After adding all fields, you can see a list of your field masking, as shown.

Formula Field:- The action ‘Formula Field’ is used to mask the records by formula field return

values. Users can enter the API name of the Formula Field at the value in the Field Masking.

Initially, after post-install the action ‘Formula Field’ is hidden from the Data Masker field

masking.

To use this action refer to the article – Data Masking by Formula Field.

Unique Checkbox– Unique functionality is used to create unique values for each field value that

has been added to the field masking. Users can check the Unique checkbox in the Field Masking

component to create unique values and after masking, the Data Masker will append the ID of that

record next to the value.

Note – User can create Unique values for the fields with Text and Text area data types only.

After Masking with Unique Checkbox, the record value will append the Record Id along with the

value mapped by ‘Replace With’ action that makes the record value unique.

Middle Name and Suffix Fields-

If the user wants to add a Middle name field and a Suffix field for masking, then two permissions

need to be assigned to the user.

Permissions –

1. Enable Middle Names for Person Names

2. Enable Name Suffixes for Person Names

Users can assign these permissions from ‘User Interface’. To assign those permissions follow the

below path,

Setup -> Home -> User Interface ->Scroll Down and click on the ‘User Interface’ -> Go to the

section ‘Name Settings’

Users can check the two checkboxes and click on the Save button to assign these permissions as

shown in the screenshot below.

Special Use Case – User Masking

Masking User records is considered one of the best ways to protect the personal information of

org’s users. When utilized, Salesforce permanently scrambles the user’s object data and replaces

it with random character strings. The user’s detail page exists, but all of its fields will contain

meaningless strings of characters. Salesforce simply obfuscates or scrambles personal data

because you can’t delete a user in Salesforce; you can only disable or deactivate a user. In other

words, the user record still remains in the database, but this method performs a soft delete. This

masking process does not work on Custom fields.

For further information on masking, and user records read this article.

Start Masking Records

Data Masking Execution

Before starting the Data masking process, you’ll need to check a few things.

Ensure that the DM System Admin Permission Set is assigned to the user.

Note: If you are going for Bulk Deletion, then clone the “DM System Admin” permission set or

create the new custom permission set. The “DM System Admin Clone” permission set should

have “Bulk API Hard Delete” system permission enabled. In Custom Metadata Types, the value

of “Use Bulk API” should be “TRUE”.

Step 1: Initiate the Data Masking process

Click on ‘Run Masking’ on the Configuration page to initiate the masking process.

Step 2: Decide whether to ‘Mask All’ or ‘Mask Specific’ records

Once you click on the ‘Data Masking’ button, you will see two options with radio buttons

Mask All: Masking of All records

Mask Specific: Masking of Specific object records

‘Mask All’ processes all objects that are added in the object masking and contain records.

Click on the ‘Run’ button to start the masking process for your batch.

‘Mask Specific‘ allows you to select specific objects to be masked from multiple objects that are

added in object masking.

https://cloudcompliance.app/docs/datamasker/configure-datamasker/start-masking-records/

Confirm the checkbox ‘Would you like to proceed with masking’ and Click on the ‘Run’ button

to begin the masking of the batch.

Masking of records created by inactive Users –

If a user wants to mask the records created by any user which is currently inactive then the user

needs to assign one permission to mask those records.

Permission Name – Enable “Set Audit Fields upon Record Creation” and “Update Records with

Inactive Owners” User Permissions

Follow the path to assign this permission –

Setup -> Home -> User Interface ->Scroll Down and click on the ‘User Interface’ -> Go to

section ‘Setup’ -> Check the checkbox as shown in the below screenshot

Dynamic Progress Banner – This is a progress banner that shows the masking progress

stepwise and it gets changes dynamically as masking makes progress. It also shows the message

when the masking gets completed or errored.

The masking cycle is now complete. You can check on the status of your execution in the

‘Execution Section

Monitor Masking Performance

Execution and Logs keep track of DataMasker’s performance at a high level (‘Execution’) and a

detailed level (‘Execution Log’).

To check the execution click on the “Executions” tab and the user can see the list of executions.

Open the most recently completed Execution.

After clicking on the Execution tab, it will display the Execution Details page

The master object shows a summary of all Execution Logs of the executed Data Masking

Configurations.

https://cloudcompliance.app/docs/datamasker/configure-datamasker/monitor-masking-performance/

Execution Log:-

Also, the user can see the section ‘Retry Executions’ which contains automatically created Retry

Execution records.

To see the ‘Retry Execution’ section on the Execution Details page, you’ll need to add it from

the Page Layout of the Execution object.

To add the Retry Executions section on the Execution detail page, you can follow the below

steps –

Step 1: Go to Object Manager.

Step 2: Search for an object, “Execution”.

• Step 3: Click on the Page Layout and open the Execution Layout.

• Step 4: Click on the Related List.

• Step 5: Drag the ‘Retry Execution’ section below the Execution Logs.

• Step 6: Click on the Save button.

Now you can see the ‘Retry Execution’ section on the detail page of Executions.

You can click on the automatically created ‘Retry Executions’ and check the execution logs as

well.

Now, click on any object name from the Execution Log – it will show detailed information for

that single object. Here we click on “Contact” and it will show the object performance details.

Users will find all performance-related information and Execution Log status here.

Advanced Configuration: Dealing with

large data set (LDV)

Got millions of records in your Salesforce Org? You’ll need to chunk millions of records into

smaller data-set.

Example: There are 20 million contacts. It could take tens of hours to mask them, the masking

operation can also encounter SOQL time-outs. The optimal approach is to slice them into five 4

million data sets. This way all of these five data sets will process in parallel. This also prevents

any SOQL time-out exceptions.

To slice large data sets into smaller data sets, DataMasker ‘Filter Criteria’ can be used. Filter

Criteria contains the where clause of a SOQL. The challenge with utilizing the ‘where’ clause in

this situation, is that when you attempt to perform the SOQL operation on a chunk of records, it

can time out. This makes it difficult to guess the right number of records to mask.

Method -1

This is where Postman comes in. Postman is an API platform for building and using APIs. It

simplifies each step of the API lifecycle and streamlines collaboration, helping you create better

APIs faster.

Below are the steps on how to utilize Postman:

Step 1: Refer article to download Postman and connect to your Salesforce Org

Step 2: Once the connection is made, you now have the ability to submit simple query batch jobs

using Bulk API. This will make it easier for you to get the count as it would not time out. For

this refer to the following article, linked here.

https://cloudcompliance.app/docs/datamasker/configure-datamasker/connect-with-postman-to-avoid-soql-timeout/
https://cloudcompliance.app/docs/datamasker/configure-datamasker/connect-with-postman-to-avoid-soql-timeout/
https://trailhead.salesforce.com/content/learn/projects/quick-start-connect-postman-to-salesforce/set-up-and-connect-postman

Setup and Connect Postman

Use Bulk API 2.0

Step 3: Once a job is submitted, go to ‘Navigate’ -> ‘Salesforce Dashboard Setup’ -> ‘Bulk Data

Load Jobs.’

Now, you can see the status of the job, and prevent your masking from being impacted by time-

outs.

https://trailhead.salesforce.com/content/learn/projects/quick-start-connect-postman-to-salesforce/set-up-and-connect-postman
https://trailhead.salesforce.com/content/learn/modules/api_basics/api_basics_bulk

Method -2

This makes it difficult for you to guess the right number of records to mask.

Here Workbench comes to the rescue. Workbench is an API platform for building and using

APIs. It simplifies each step of the API lifecycle and streamlines collaboration, helping you

create better APIs—faster.

Enable ability to execute Bulk API queries through an exposed DataMasker API

pcldm.DM_DataMaskingService.createBulkQueryJob(‘ ’);

For eg.,

pcldm.DM_DataMaskingService.createBulkQueryJob(‘select id from Contact limit 3000000’);

Goto workbench, login with your salesforce org and click on the ‘Apex Execute’.

Click on ‘Execute’.

After Execute the query it will give the result

The User has to check in Bulk Data Loads Jobs.

Method -3

Enable the ability to execute Bulk API queries through an exposed DataMasker API via

Developer Console

pcldm.DM_DataMaskingService.createBulkQueryJob(‘select id from employee c limit

2000000’);

Click on ‘Execute’.

The User has to check in Bulk Data Loads Jobs.

Apex Action Masking
Apex Action is a special action provided in the DataMasker for masking the field value. Using

Apex Action, users can encrypt the field value. This encryption will be based on the key

specified in the custom metadata types. This key works by encrypting the field value character

by character.

(Note: Users have to create custom metadata types with the values that should replace the old

values after masking the desired records/fields.)

For example – Here “Key” is the custom metadata type and “New” and “Old” are the two

custom fields that will hold both the list of characters and their replaceable characters.

https://cloudcompliance.app/docs/datamasker/configure-datamasker/apex-action-masking/

Now click on the “Manage Keys” button and add labels for keys.

Click on the label link to add “New” and “Old” values.

global class DM_OfbuscationCustomV1 implements pcldm.DM_OfbuscationService {

global map < String, Object > ofbuscateData(map < String, Object > dataMap) {

if (dataMap.containsKey(‘objectName’) && dataMap.containsKey(‘fieldName’) && dataMap.containsKey(‘fieldType’) &&

dataMap.containsKey(‘fieldValue’)) {

String objectName = (String) dataMap.get(‘objectName’);

String fieldName = (String) dataMap.get(‘fieldName’);

String fieldType = (String) dataMap.get(‘fieldType’);

String fieldValue = (String) dataMap.get(‘fieldValue’);
if (String.isNotBlank(fieldValue)) {

Map < String, String > charMap = new Map < String, String > ();

for (Key mdt k: Key mdt.getall().values()) {

charMap.put(k.Old c, k.New c);

}

List < String > tempArray = fieldValue.split(”);

String returnStr = ”;
for (String character: tempArray) {

returnStr += charMap.containsKey(character) ? charMap.get(character) : character;

}

if (String.isBlank(returnStr)) {

returnStr = fieldValue;
}

returnStr = returnStr.escapeCsv();

dataMap.put(‘fieldValue’, returnStr);

}

}

return dataMap;

}

}

After the creation of all the keys users have to add a custom class ‘DM_OfbuscationCustomV1’

in the org which will inherit managed package class ‘DM_OfbuscationService’ to mask data

using Apex action.

Below are the steps to implement an Apex Action masking solution –
Step 1: Create a New Configuration

Open the Data Masker app and click on ‘Configuration’ in order to create a new configuration

record. Click on the ‘New’ button and name the configuration.

Open the configuration by clicking on the link.

Step 2: Create an Object Masking record

Create an Object Masking record for the Object on which you want to use Apex Action. In this

case, the Object is Contact.

Step 3: Click on the object link to add fields for making. Users will be redirected to the field

masking layout.

Add the Apex Action Class Name.

Add the Apex Action class name in the ‘Enter Value’ text field. Here, you can add more fields as

per business requirements.

Users can add multiple fields at the same time by checking the checkbox. Select Replace with

‘Apex’ and enter the class name ‘DM_OfbuscationCustomV1’ at the replacing value. Click on

the Save button.

Here, mapping is all set and users can mask records with defined Apex Action.

For example, suppose we want to replace first name “John” of the contact with Apex Action and

the user has created a key as follows –

J -> X , o -> w , h -> b , n -> c.

Then, after masking “John”, it will be masked with the mentioned key and the new first name

will look like “Xwbc”.

Let’s take a Contact record “John Smith”.

Now open the configuration and start masking for Apex Action by clicking on the “Run

Masking” button and following the steps.

After successfully masking, the record will be masked as mentioned keys in the Custom

Metadata. In this case “John” will be replaced with the text “Xwbc”.

In this way, the user can add multiple fields in masking and can mask data with APEX action.

Data Masking Using Action – Formula

Field

Data Masker supports the action ‘Formula Field’ which replaces the field value with the value

returned by the Formula Field.

There are several data types that support Formula Field return types like Checkbox, Currency,

Date, Number, Percent, Text, and Time.

Pre-requisites:

Initially, Formula Field action is hidden from the Field Mapping Layout, so the user needs to

unhide this from the Setup.

To unhide the Formula Field follow the below steps –

Solution Steps –

Step 1: i. Go to Object Manager

Ii. Search for an object ‘Field Masking’

Iii. Click on the Field ‘Further Action’ from the object ‘Field Masking’

iv. Scroll Down to the Inactive Values section

https://cloudcompliance.app/docs/datamasker/configure-datamasker/data-masking-using-action-formula-field/
https://cloudcompliance.app/docs/datamasker/configure-datamasker/data-masking-using-action-formula-field/

v. Click on the ‘Activate’

• After completing Step 1, the User needs to complete Step 2 to include the ‘Formula

Field’ action in the Field Masking component.

Step 2: i. Go to Object Manager

Ii. Search for object ‘Field Masking’

Iii. Click on the Field ‘Further Action’ from the object ‘Field Masking’

iv. Scroll Down to the ‘Picklist Options’ section

v. Click on the link ‘Change’ next to the Controlling Field

vi. After Clicking on the ‘Change’ user will be redirected to the ‘Edit Field Dependency’ page.

Click on the Formula Field

• Click on the ‘Include Values’

• Now Formula Field action is ready to use.

• To mask the records with the help of Formula Field action, user needs to enter the API

name of the respective Formula Field in the Replacing Value section.

Note – While adding a field for masking with the formula field, the user needs to make sure

Formula Field with respective return type is created.

Eg. If the user is adding Number Field in the field masking then Formula Field with a Number

return type should be created for that particular object.

• Click on the Save button and execute the Data Masking

• After masking, users can check that field values will be replaced by the value returned by

the Formula Field.

• Likewise, users can perform masking by Formula Field action as per the business

requirement.

Note – There may be some variations in the value for Data type ‘Date/Time from the value

returned by the Formula Field for it.

Considerations for Person Account

Org

For Data Masker App
You need to create a mapping in two groups. The first group will have the record type Id of

Business Account and Person Account and Group 2 will contain the Contact object (in case you

want to mask contact along with the account).

Note – Keeping Person account and Contact in different groups avoids row locking issues.

The Group 1 mapping contains Business Account and hence the filter criteria will contain

RecordTypeId = ‘RecordTypeID of Business Account’.In the field mapping for this business

account users have to add only the “Name” field in the field mapping under the Account Object

Object- Account

Field- Name

Apart from this, the user can add any number of fields in the field mapping

Person Account

For Example- Group 1 contains the filter criteria of Person Account RecordTrypeId and users

have to add only the “FirstName” and “LastName” fields in the field mapping under the Account

Object

Object- Account

Field- First name

Field- Last name

Apart from this, the user can add any number of fields in the field mapping

Note – For more information on the person account please refer to the Salesforce Knowlege

Article – Person Accounts in Salesforce

https://cloudcompliance.app/docs/datamasker/configure-datamasker/considerations-for-person-account-org/
https://cloudcompliance.app/docs/datamasker/configure-datamasker/considerations-for-person-account-org/
https://help.salesforce.com/s/articleView?id=sf.account_person.htm&type=5

Considerations for Shield Org

DataMasker is compatible with Salesforce Shield and you should find no performance

degradation or product limitation. However, one of the considerations for Shield Orgs is that the

‘Filter Criteria’ field on the Masking Object can not include a Shield encrypted field.

Salesforce Shield Org with Person Account Enabled

Shield Orgs with Person Account enabled have Account and Contact somewhat intertwined.

Encrypting some of the specific fields on Account encrypts the equivalent Contact fields and

vice versa. A list of fields that follow this behavior are:

• Name

• Description

• Mailing Address

• Phone

• Fax

• Mobile

• Home Phone

• Other Phone

• Email

https://cloudcompliance.app/docs/datamasker/configure-datamasker/considerations-for-sheild-org/

Reactivate Automations

DataMasker application Deactivates all the automations like Process Builders, Workflows,

Flows, Triggers, and Validation Rules while processing. After Masking is completed, Data

Masker reactivates those Automations that are deactivated already.

But in the case that due to some uncertain error or exception masking gets stuck and Data

Masker has already deactivated all automations then the user can use the button ‘Reactivate

Automations’ to reactivate those automations instead of activating them manually.

Prerequisites-

• The user should know which execution has errored out and deactivated all the

automations.

Solution Steps –

Users can find the ‘Reactivate Automations’ button on the Execution page as shown below.

If it is not available on the Execution page then the user can add it from the page layout of the

Execution object.

Go to Setup -> Search for an object Execution

Go to Page Layouts – > Open Execution Layout

https://cloudcompliance.app/docs/datamasker/configure-datamasker/reactivate-automations/

Click on the Mobile and Lightning Action and search for the button ‘Reactivate Automations’

Drag the ‘Reactivate Automation’ button to the Layout

Click on the Save button

Go back to the Execution Page and Refresh it, User will see the ‘Reactivate Automation’ but is

visible.

Now go to the execution by which all the automations got deactivated and Click on the

‘Reactivate Automation’ button.

All the automations will be reactivated

User can check all the automations has been reactivated by the workbench

Likewise, user can use the ‘Reactivate Automations’ to activate all the automations which has

been deactivated by Data Masker during processing.

Automate Post Refresh

Step 1: Update Custom Labels With Post

Refresh Activities
*This step is Optional

Custom Labels:- Custom labels enable developers to create multilingual applications by

automatically presenting information (for example, help text or error messages) in a user’s native

language.

Prerequisites –

Assign ”DM System Admin” permission set to the appropriate user.

Solution –

1. Navigate to the Configuration tab and open the configuration record.

2. Now scroll down to the “Post Refresh Activities” section. To create a new Post Refresh

Activity record, click on the Post Refresh Activities Tab.

Click on the New Button

3. A pop-up will appear where you will see two record types in which you can select Custom

Labels and click on the Next button.

4. Second pop-up will appear. Enter the details to create a new Custom Label record.

Post Refresh Name – Name of Post Refresh Activity

Description – Description for Post Refresh Activity

Active – You need to check the Active checkbox

Sequence – Sequence that decides which Post Refresh Activity will execute first.

Click on the Save button.

5. Now click on the Custom Label record that has been created

This will open the detail page where you can find the two sections,

• Post Refresh Activities

• Post Refresh Activity Details

6. Click on the New button to create the Post Refresh Activity Details record.

7. After clicking on the New button you will see two record types, user can select Custom Label

and click on the Next button.

8. Now click on the Next button, and the detail page will appear where the user can fill in the

required details.

There is an Edit action in Custom Label, users can update existing Custom Label records as per

the business use case.

Update Existing Custom Label –

• To Update the existing custom label you need to select the Edit action.

• Click on the Custom Label that has been already created under the Post Refresh Tasks tab.

• After clicking on the Post Refresh Name you can enter the name of the custom label that has been

created or the existing custom label name and then the new value that the user wants to replace

with.

• Here user needs to change the Action Edit as shown below screenshot and click on the Save

button.

• Navigate to -> Configuration section and click on the Run Post Refresh Activities button.

• Click on the Next button

• Click on the Finish button,

• Now user can check that the Custom Label record has been updated in the Custom Label list.

Step 2: Update Remote Site Setting With Post

Refresh Activities

*This step is optional

Prerequisites –

1. Assign ”DM System Admin” permission set to the appropriate user.

2. Page layout assignment for Post Refresh Activities and Post Refresh Activity Details.

Page Layout Assignment for Post Refresh Activities

• Navigate → Setup → Object Manager tab

• Search “Post Refresh Activities” in the Quick Find box and press enter. Click on the object

named “Post Refresh Activities” in the search result.

• Click on “Page Layout” as shown below screenshot.

• Click on the ‘Page Layout Assignment’ button to add page layout.

• User will find a list of all the records types and their assigned page layouts

• Noe user needs to click on “Edit Assignment” to make changes

• Select column “Remote Site Setting” and choose “remote site setting layout” from the drop-down

list and click on the “Save” button.

Page Layout Assignment for Post Refresh Activity Details

• Navigate → Setup → Object Manager tab

• Enter “Post Refresh Activity Details” in the Quick Find box and press enter.

• Click on the object named “Post Refresh Activity Details” in the search result.

• Click on “Page Layouts” as shown in the below screenshot.

• Click on the “Page Layout Assignment” button to add page layout.

• User will find a list of all the records types and their assigned page layouts

• Noe user needs to click on “Edit Assignment” to make changes

Select column “Remote Site Setting” and choose “Remote Site Setting Layout” from the drop-

down list and click on the “Save” button.

Remote Site Setting –

Using Data Masker users can update Remote Site Settings

Solution Steps –

1. Navigate →Configuration tab and open the configuration record.

2. Now scroll down to the “Post Refresh Task” section. To create a new Post Refresh Activity

record, click on the New button.

3. Select record type “Remote Site Setting” and click the “Next” button

4. Give the Post Refresh Name and Sequence as per the requirement and make sure to Active the

checkbox.

5. Users can See “Remote Site Setting” is added to the list view of Post Refresh Activities then

click on the record link to add Post Refresh Activity Details

6. Click on the “New” button to create a record of the Post Refresh Activity Details record.

7. Select record type “Remote Site Setting” and click the “Next” button.

The Remote Site Setting has edit operation –

• Edit – Enter the value that the user wants to replace with the existing value and click on the Save

button

Make sure to add the appropriate “Remote Site Setting” name in the right format and click on the

Save button

Note: The Remote Site Setting API name can only contain underscores and alphanumeric

characters. It must be unique, begin with a letter, not include spaces, not end with an underscore,

and not contain two consecutive underscores.

The URL protocol, URL should start with http:// or https://

User can see the record of Remote Site Setting in the Post Refresh Activities Details.

8. After saving the record, go back to the configuration detail page and click on the “Run Post

Refresh Activities” button

9. Check the radio button “Yes” to proceed with the post refresh activities and click on the

“Next” button to continue.

10. Click on the “Finish” button

11. User can see the Remote Site Setting record is edited as per the action defined.

/services/apexrest/pcldm/v1/DataMaskerService

/services/apexrest/pcldm/v1/FetchMaskingStatus

Integrate - APIs & DevOps

Step 1: Run DataMasker From 3rd Party

Tools Via REST API
*This step is Optional

Overview

Data Masking is a process to mask all sensitive data available in Sandbox which will prevent

developers or other users from viewing sensitive data. In the particular use cases where the Data

Masking needs to be invoked by an external system, Cloud Compliance offers a REST API

interface for masking sensitive data.

You can automate running Data Masking from Enterprise schedulers like Tidal, KRON & others

that can make a REST API call.

This document explains how to invoke Data Masking configurations that are pre-configured via

REST API using a JSON-based callout. The API performs data masking of sensitive data in the

relevant sandbox whose details are provided in the configuration.

The REST APIs that are developed for this requirement are as follows –

1. POST Request: This is the 1st API that is used to execute data masking via REST.

URL

Request Body

2. POST Request: This is the second API that is used to retrieve the Status of masking after the

execution is completed.

URL

{

“dataMaskingRequest”: {

“maskingId”: “cff536a0adbf672d982a4136088fbe9e”

}

}

{

“dataMaskingRequest”: {

“executionId”: “a043h00000QvyytAAB”

}

}

Request Body

Solution Steps

1. Navigate->Configurations tab of the Data Masker application.

2. Click on the Configuration name. In this case, click on ‘UAT sandbox’.

3. Copy the Configuration id and paste this id into the REST script that needs to be executed for

data masking.

/services/apexrest/pcldm/v1/DataMaskerService

4. Navigate-> REST tool such as Salesforce developer workbench, Postman, Insomnia, etc.

(This example uses Salesforce Developer Workbench)

5. Navigate-> ‘REST Explorer’ from the Utility tab within the workbench and select the

“POST” method

6. For the “POST” method, enter the DataMaskerService REST call URL

7. Copy the Configuration id and paste it in the following JSON format of the request body.

{

“dataMaskingRequest”: {

“maskingId”: “58dbdf18d60675f69638b45445556f8b”

}

}

https://workbench.developerforce.com/restExplorer.php

8. Click the “Execute” button to invoke the REST API

9. The REST API returns a Success status as True or False and the execution Id.

/services/apexrest/pcldm/v1/FetchMaskingStatus

{

“dataMaskingRequest”: {

“executionId”: “a045j000008VCN0AAO”

}

}

10. Use the 2nd REST API to get the execution status. Copy the execution id retrieved from the

First API call and pass it to the second API to get the execution details. Again this is the POST

method used to fetch the details.

URL

Request Body

11. Click on Execute to get the execution details. The attributes extracted from this REST API

call out are as follows –

• status: true

• isProcessCompleted: true

• execution

o sfId: a045j000008VCN0AAO

o recordUrl: https://scalepclabs.my.salesforce.com/a045j000008VCN0AAO

o recordsTotal: 23

o recordsProcessed: 23

o recordsErrored: 0

o maskingStatus: Completed

o executionType: All

https://scalepclabs.my.salesforce.com/

HTTP / 1.1 200 OK

Date: Fri, 04 Mar 2022 11: 35: 36 GMT

Set – Cookie: CookieConsentPolicy = 0: 1;

path = /;

expires = Sat, 04 – Mar – 2023 11: 35: 36 GMT;

Max – Age = 31536000 Set – Cookie: LSKey – c$CookieConsentPolicy = 0: 1;

path = /;

expires = Sat, 04 – Mar – 2023 11: 35: 36 GMT;

Max – Age = 31536000 Strict – Transport – Security: max – age = 63072000;

includeSubDomains X – Content – Type – Options: nosniff X – XSS – Protection: 1;

mode = block X – Robots – Tag: none Cache – Control: no – cache, must – revalidate, max –

age = 0, no – store,

private Set – Cookie: BrowserId = NbheW5uvEey1zs2_8w2v5Q;

12. The detail raw response is as follows:

domain = .salesforce.com;

path = /;

expires = Sat, 04 – Mar – 2023 11: 35: 36 GMT;

Max – Age = 31536000 Content – Type: application / json Vary: Accept – Encoding Content –

Encoding: gzip Transfer – Encoding: chunked {

“status”: true,

“isProcessCompleted”: true,

“execution”: {

“sfId”: “a045j000008VCN0AAO”,

“recordUrl”: “https://pcl-af-dev-ed.my.salesforce.com/a045j000008VCN0AAO”

“,

“recordsTotal”: 23,

“recordsProcessed”: 23,

“recordsErrored”: 0,

“maskingStatus”: “Completed”,

“executionType”: “All”

}

}

Step 2: Run DataMasker From DevOps –

Copado

*This step is Optional

Overview

Data Masking is a process to mask all sensitive data available in Sandbox which will prevent

developers or other users from viewing sensitive data. In the particular use cases where the Data

Masking needs to be invoked by an external system, Cloud Compliance offers an API interface

for masking sensitive data.

You can automate your Data Masking to be triggered from leading DevOps & CI/CD tools such

as Copado, Gearset, Jenkins, AutoRABIT, Flosum, or GitHub.

This document explains how to invoke Data Masking configurations that are pre-configured via

APEX based callout. The API performs data masking of sensitive data in the relevant sandbox

whose details are provided in the configuration.

The APEX APIs that are developed for this requirement are as follows –

1. Navigate->Configurations tab of the Data Masker application.

2. Click on the Configuration name. In this case, Click on ‘APEX API – UAT sandbox’.

3. Copy the Configuration id and paste this id in the APEX API script that needs to be executed

for data masking.

Solution Steps

1. Navigate-> Copado Release Management app and Make sure that ‘Destination org’ should be

connected in Deployments.

2. Select ‘Apex’ from the type of call-outs and use our Data Masking API to execute data

masking. The input parameter is the Configuration Id which was copied above for eg.

‘5856347d64232790a3157ca39f341477’

pcldm.DM_DataMaskingService.execute('5856347d64232790a3157ca39f341477');

3. Click on ‘Deploy’ and then ‘Deploy All’

4. Check The Status

5. You can check the execution status in the Data masker.

Go-live-Data Masking

Data Masker -Import/Export Wizard

In the Data Masker application, the user can create a Configuration that is used for the Data

Masking process. This document showcases how Data Masker Configuration can be transferred

from one org to another in order to efficiently migrate data from sandbox to production using the

Import/Export feature of the Data Masker application.

Note – This feature is available from DM 1.26 Release version onwards.

Solution Steps – 1. Navigate to the Configuration tab in the application. User will see all the

Configurations which are created and ready to export.

Users will find the Export and Import button on this page.

Export- The user can Export the Configuration from the current org and can import it to the

current or destination org.

Import – The user can import the mapping which is exported from the source org.

Note- While importing the Configuration user needs to make sure that all the objects, fields and

Patterns which are available in the Exported file(JSON file) are available in the Destination org.

2. User will see the ‘Export’ button, Click on it.

Here, the user will see all the configurations that the user can Export, the configurations which

are not required to export the user can cancel by clicking on the ‘Close’ symbol.

After closing the unnecessary Configuration user will see only the Configuration that needs to be

exported.

3. Click on the ‘Download’ button to save the configuration in the System. It will download the

file in the format of JSON.

After clicking on the ‘Download’ button the file will be downloaded

All set, the Configuration is Downloaded successfully.

4. Now, go to the Destination org in which the user wants to Import the Configuration to run the

Data Masker.

Navigate to the Configuration tab, the user will Import Button there.

5. Click on the ‘Import’ button, it will take the user to the page where the user needs to upload

the JSON file which is to be imported into the destination org.

Click on the Upload Files button

6. Select a file from the System and click on the Upload button

7. After clicking on the ‘Upload’ button user will get a Success message in the pop-up.

8. Now click on the Close button to close the window

Here the user has successfully imported the mapping from the Source org to Destination org.

Likewise, the user can migrate the Data Masker configuration between the orgs without losing

the information.

Import/Export handles Patterns during migration –

Data Masker handles the Patterns while importing the Configuration from Source org to

destination org.

If Destination org doesn’t have the patterns which are exported from the source org, then the

patterns will be created automatically after importing and will be assigned to the respective field

masking so that the user doesn’t need to create patterns manually for importing the

configuration.

If the pattern is already available in the destination org, Data Masker updates the Pattern values

as per the values stored in the exported file so that it will not create a duplicate pattern after

migration.

Troubleshooting DataMasker

Identify Bulk Job Exceptions
DataMasker uses Bulk API 2.0 to mask records. Sometimes records being updated by Bulk Job

can fail because of an underlying exception. Bulk API 2.0 provides REST endpoints that allow

admins to fetch a raw response that shows exception records. Here are the steps to get the

exception raw response.

Identify Bulk Jobs with errors

SELECT

pcldm Type c,

pcldm Entity_Id c,

pcldm Records_Total__c,

pcldm Records_Processed c,

pcldm Records_Errored c

FROM

pcldm Entity_Log c

WHERE

pcldm Type c = 'Bulk Job Id'

AND pcldm Records_Errored c > 0

AND pcldm Execution_Log r.pcldm Execution r.Name='Execution-XXXX'

Update Execution-XXXX with the name of your execution. This SOQL will return the Bulk Job

ID in the 2nd column(pcldm Entity_Id c). Make a note of these Bulk Job IDs, we will need

them in the next step.

Login to workbench.salesforce.com

Use your Salesforce credentials and select the latest API version from the drop-down.

Once you are in the workbench, navigate to Utilities->Rest Explorer and execute the REST

endpoint as shown below

Example: Rest Call

/services/data/v56.0/jobs/ingest/750DE000006dnTH/failedResults

Note: Update the version from v56.0 to the latest one and replace the ‘750DE000006dnTH’ with

your Bulk Job ID

Generate Exception Logs
Data masking is a complex operation and can run into issues because of a variety of reasons-

Data, Metadata, and Salesforce Platform limitations. DataMasker has a way to capture

exceptions in a custom object. This functionality only needs to be enabled, if Cloud Compliance

support requests so.

Here are the steps:

Step 1: Search Custom Metadata Type

In your Salesforce Org, search for “Custom Metadata Types”

Step 2: Update Metadata Value

Click on ‘Manage Records’ for ‘DM App Config’

Click on the ‘Edit’ link

Update the value to “True”

The value of ‘Label Capture_Exceptions’ is now successfully set to “True”. This means

DataMasker will now capture metadata exceptions.

Troubleshooting Internal Server Error Issues

“Getting error InternalServerError : Connection pool is shutting down:

ConnectionPool2:InvalidJobState : Job has been set to terminal state”

This is standard salesforce exception – ‘InvalidJobState’ which mean the job state specified in a

job update operation is invalid. Hence it is set to terminal state.

It has nothing to do with DataMasker Application.

User can ignore these types of error because it will be fixed in the Retry Operation of

DataMasker.

Resolution: To get more details about such type of exceptions, user can raise a case with

Salesforce.

Troubleshooting: How to fix the missing execution record issue

while running DataMasker
Every time the ‘Run Masking’ button is clicked, DataMasker creates an

Execution record. If the record is not getting created, it might be an issue
with the session settings. This issue can be due to the default organizational

security settings that is set to ‘High Assurance’ value in the ‘Session Security

Level Required at Login’ field. Hence, the execution record is not being

created when running DataMasker. To resolve this issue, follow the steps
below:

Step 1: Change the value of the ‘Session Security Level Required at Login’ field

in System Admin Profile from ‘High Assurance’ to ‘None’ and save the

settings.

Step 2: Navigate back to the configuration and click on the ‘Run Masking’
button. An execution record will now be created.

It is important to note that changing the ‘Session Security Level Required at

Login’ field value to ‘None’ can have implications for session security settings.

Therefore, it is recommended to change the value back to its original setting

after completing the DataMasker execution or consulting with the Security
Team.

Following these steps should resolve the missing execution record issue
when running DataMasker. However, if the issue persists or if you have any

further questions, please contact our support team for further assistance.

What's New in Data Masking

Release Notes 1.28.5 (May-2023)

Release Date

• 10-May-2023

AppExchange Link

Download Free DataMasker here

Enhancements

• Optimized Import mapping JSON: Import mapping JSON file is now optimized and of

smaller size

• Optimized Feed Tracking Deactivation: Optimization to how feed tracking is turned

off and on for Standard, Custom, and Managed Package fields during and after data

masking

• History Tracking Automation: Optimization to how history tracking is turned off and

on for Standard, Custom, and Managed Package fields during and after data masking

Bug Fixes

• Pattern Duplicate ID error: Import configuration displays error for a pattern used

across multiple fields in the source mapping layout. This bug is now fixed.

Known Issues

• Formula Field action type: DataMasker doesn’t support masking of DateTime field using Formula

field action.

Release Notes 1.28.4 (Jan-2023)

Release Date

• 29-Jan-2023

AppExchange Link

Download Free DataMasker here

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3u00000OO2JKEA1
https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3u00000OO2JKEA1

Enhancements

• Optimized Import mapping JSON: Import mapping JSON file is now optimized and of

smaller size

• Optimized Feed Tracking Deactivation: Optimization to how feed tracking is turned

off and on for Standard, Custom, and Managed Package fields during and after data

masking

• History Tracking Automation: Optimization to how history tracking is turned off and

on for Standard, Custom, and Managed Package fields during and after data masking

Bug Fixes

• Pattern Duplicate ID error: Import configuration displays error for a pattern used

across multiple fields in the source mapping layout. This bug is now fixed.

Known Issues

Release Note 1.27.1 (Sep-2022)
Release Date

• 28-Sep-2022

AppExchange Link

Download Free DataMasker here

New Functionality

• Dynamic Progress Banners: DataMasker now supports lightning banners throughout the

masking life cycle. These banners will indicate to the user about missing steps required to

complete the configuration, masking progress, and status of execution at every stage.

• Mask Data with Unique Value: Replace sensitive information stored under Text and Text Area

fields for any object by checking Unique field in the field masking layout. Unique checkbox

offers a fresh approach to masking your data over frequently used masking actions.

• Label Replacement: Delete Settings Label name is now replaced by ‘Org-Wide Delete

Settings’

Enhancements

• Data Masking Action button: Previous button (DataMasking) has now been deprecated from

the configuration page layout. Initiate DataMasking execution using the new LWC component

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3u00000OO2JKEA1

‘Run Masking’ action button that supports modern UX design and faster loading of the execution

cycle.

• Mask Data using Formula Field: DataMasker allows the user to mask their sandbox data using the

power of the formula field. Simply add the Formula field action from Object Manager under the

field masking layout to mask data using multiple reference field values.

• Prevent Multiple Masking Executions: DataMasker will alert the user and display the details

about the existing execution if any user attempts to initiate multiple executions at any given point

in time.

Bug Fixes

• Execution Status Bar: Fixed bar length alignment issues that display Green, Red, and Yellow

status bar based tally of total records masked, In-progress and errored. This fix will ensure

accurate status for objects with zero records, errored records, etc under Execution and Execution

Logs records.

Known Issues

• Formula Field action type: DataMasker doesn’t support masking of DateTime field using

Formula field action.

Release Note 1.26 (Jul-2022)

Release Date

• 05-Jul-2022

AppExchange Link

Download Free DataMasker here

New Functionality

• Export/Import Masking Configuration: DataMasker supports the migration of masking

configurations from source org to destination org and vice versa. DataMasker allows users to

export or import specific configurations based on their requirements. In addition, DataMasker

detects the existing configurations and supports ‘Upsert’ of updated mappings.

Enhancements

• Bulk Queries using DataMasker API: Perform SOQL on bulk queries through exposed

DataMasker API. This API fetches the count of large data sets without entering a timeout session.

• Enhanced visibility of Masking Record count: DataMasker now refreshes the masking count

every 15 minutes. Users can now view the exact count of records processed or errored under

execution logs.

• Managed Package Validation Rule: Validation Rules of Managed Packages can now be

deactivated during DataMasking execution and supports reactivation after completion of the

entire execution.

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3u00000OO2JKEA1

Bug Fixes

• Field Mapping Component: The field masking page encountered a loading issue due to 200+

fields associated with the Case object. This is now fixed and the field masking layout for any

object can accommodate the loading of 350+ fields instantly.

• Disjointed Bar Chart: DataMasker showed inaccurate alignment of the masking status field

based on the count of processed or errored records. This is fixed now.

• OwnerID Field Type: OwnerID ‘Lookup’ field is now replaced with the ‘Text’ field on the field

masking layout. A high volume of user metadata led to a field loading issue. This has been

resolved now.

• Removal of Compliance Categorization Values: DataMasker wiped out the Compliance

Categorization value assigned to a particular field during masking execution. This has been fixed

now.

Known Issues

• Managed Package Object History: DataMasker does not disable the Object ‘Set Field History’

of managed packages after initiating the DataMasking operation.

Release Note 1.24 (May-2022)
Release Date

• 10-May-2022

AppExchange Link

Download Free DataMasker here

New Functionality

• Inline Edit Field Masking: The ‘Field Masking’ user interface(Lightning Web Component)

component has been re-written to allow inline editing. This allows adding and removing multiple

fields all in one go. This saves dozens of clicks and page reload and refreshes and improves user

efficiency.

Enhancements

• Optimized Configuration Page layout: The configuration page layout has been optimized for

better visibility. It uses a Header and Left Sidebar page style that helps to show the configuration

details and the related records without the need for scrolling.

• History Objects - Users can now add [Object] History to the object masking. This enables

removing history records for all history-tracked objects. Example: Account History, Contact

History

• New Field ‘Description’ on Object Masking - This allows users to add comments on each of

the Object Masking records.

Bug Fixes

• None

Known Issues

• None

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3u00000OO2JKEA1

Release Note 1.23 (Feb-2022)
Release Date

• 17-Feb-2022

AppExchange Link

Download Free DataMasker here

New Functionality

• Clone with Related: Many customers with large data volumes have a need to add the same

object and all the fields multiple times(with different filter criteria). This was very time-

consuming and frustrating. The ‘Clone with Related’ button is released to make it easy for admins

to clone the Object Masking record along with all the Field Masking records.

Enhancements

• License Count Changes: DataMasker Lifetime Free license allows up to 4 Objects to be masked.

Many customers with large data volumes have a need to add the same object multiple times(with

different filter criteria). This allows DataMasker to mask a subset of records for the same object

in parallel. This works great but was counting against the 4 object limit. With this release,

DataMasker has changed the way Object count is calculated. Now the count of objects is unique

by Object name.
• Object Masking - User Interface: LWC page has been enhanced for better usability

• Field Masking - User Interface: LWC page has been enhanced for better usability

• DataMasker Flow: Instructions on the ‘DataMasker’ flow component have been simplified

Bug Fixes

• Field Masking Action: In the earlier versions of DataMasker, changing the Further Action from

'Hardcode' to 'Regex' or ‘Custom List’ was buggy and was causing the masking to fail. This has

been resolved.

• Masking Status: In the earlier releases, there was a bug that could cause the masking counts -

Records Total, Records(Processed), Records(Errored)- to be inaccurate on the Execution Log

record. This has been resolved.

Known Issues

• None

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3u00000OO2JKEA1

Release Note 1.22 (Dec-2021)
Release Date

• 27-Dec-2021

AppExchange Link

Download Free DataMasker here

New Functionality

• New Tab "Setup Assistant" is introduced which makes the DataMasker configuration process

easy for users.

Enhancements

• Data Masker Free version now allows 4 Objects with unlimited records for a lifetime.

• Data Masker to validate multiple settings and permissions checks to enhance exception handling.

• Users can now enrich the masking of PII data through newly created lists available in the Pattern

object.

Bug Fixes

• Non-editable fields (Audit fields, Formula fields, Compound fields) are removed from the field

masking dropdown.

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3u00000OO2JKEA1

Release Note 1.21 (Sep-2021)
Release Date

• 12-Sep-2021

AppExchange Link

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3u00000OO2JKEA1

New Functionality

• Retry Count: Automatically retries to mask failed records. Often in LDV, record locking prevents

some records from masking, and all the failed records are retried by DataMasker.

• Post Refresh Activity: Admins spend hours updating metadata on refreshed Sandboxes.

DataMasker has now the functionality to automatically update Custom Label and Remote Site

Settings at a click of a button.

Enhancements

• Improvised exception handling and reporting

• Data Masker free now allows 2 Objects with unlimited records for a Lifetime

• License for paid DataMasker customers can now be enabled via an Encrypted License Key

\

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3u00000OO2JKEA1

Step 3: Assign Permission Sets To
Your Profile

Data Masker includes a single Permission Set “DM System Admin” that can

be assigned to the appropriate user, thus allowing them to configure the

product.

Step 1: Go to “Setup”, and enter “Permission Sets” in the Quick Find box. Click

on Permission Sets as shown below screenshot.

Click on the Permission set ‘DM System Admin’

Click on the Manage Assignment button to assign this permission set to the

appropriate user

Click on the Add Assignments button

Select the user from the user list.

[Note: Permission set can be assigned to multiple users so we can add more

than one user by selecting the checkboxes.]

Click on the “Assign” button.

Click on the Done button

Here ‘DM System Admin’ permission set has been assigned to the user

successfully.

Step 2: There are three more permissions that need to be assigned to the

user. The permissions are,

1. Bulk API Hard Delete

2. Query all Files

3. View & Edit Converted Leads

So, there are three options by which user can assign these permissions.User

can choose either any one of the below,

Option 1: Add permissions to the existing permission set.

Option 2: Add permissions to the user’s profile.

Option 3: Create a new custom permission set and assign these permissions.

User can follow the below steps to add these three permissions,

Option 1: Add permissions to the existing permission set.

Step 1: Goto Permission Set and click on the link “App Permissions”.

Step 2: Click on the Edit button to make changes.

Step 3: Find “Query All Files” and enable the checkbox next to “Query All

Files”.

Step 4 : On the same page find “View and Edit Converted Leads” and enable

the checkbox next to “View and Edit Converted Leads”.

Click on the “Save” button.

Step 5: Scroll down to System Permissions and click on the link to enable

“Bulk API Hard Delete”.

Step 6: Click on the Edit button to make changes.

Step 7: Find “Bulk API Hard Delete” and enable the checkbox next to “Bulk

API Hard Delete”.

Click on the “Save” button.

Step 8: Now user can assign this permission set to the appropriate user if it is

not assigned already.

Click on the “Manage Assignment” button.

Step 9: Click on the “Add Assignment” button and the user will see a list of all

users.

Step 10: Select the user from the user list.

[Note: Permission set can be assigned to multiple users so we can add more

than one user by selecting the checkboxes.]

Click on the “Assign” button.

Step 11: Click on the “Done” button and now the selected user has been

added to the assignment.

Option 2: Add permissions to the System Administrator cloned or System

Administrator equivalent profile.

Step 1: Go to the Profile (We have taken a ‘Data Masker User’ profile for demo

purpose here)

Step 2: Click on the Edit button to make changes.

Step 3:Scroll down to the section ‘Administrative Permissions’

Step 4:User will find ‘Bulk Api Hard Delete’ permission, Enable the checkbox

next to it

Step 5:In the same section, user will find ‘Query All Files’ permission, enable

the checkbox next to it

Step 6:Again in the current section that is ‘Administrative Permissions’ user

will find ‘View and Edit Converted Leads’ permission

Enable the checkbox next to it

Step 7:Now click on the Save button

So we have given all three permissions here in the profile. Now user can

assign this profile if not assigned already.

Option 3: Create a new custom permission set and assign these permissions.

Step 1: Goto Permission Set and click on the New button

Step 2:Enter Name for the Permission Set

Step 3:Click on the Save button

After Clicking on the Save button the newly created permission set will open

Step 4:Now to assign these permissions, user can click on the link “App

Permissions”

Step 5: Click on the Edit button to make changes.

Step 6: Find “Query All Files” and enable the checkbox next to “Query All

Files”.

Step 7 :On the same page find “View and Edit Converted Leads” and enable

the checkbox next to “View and Edit Converted Leads”

Step 8:Click on the “Save” button.

Step 9: Scroll down to System Permissions and click on the link to enable

“Bulk API Hard Delete”.

Step 10: Click on the Edit button to make changes.

Step 11: Find “Bulk API Hard Delete” and enable the checkbox next to “Bulk

API Hard Delete”.

Step 12:Click on the “Save” button.

Now user can assign this permission set to the appropriate user if it is not

assigned already as explained above in Option 1.

Step 4: Assign Page Layouts

Data Masker has provided different page layouts for “Masking” and “Deletion”.

A masking Page layout is used if a user wants to add field masking. whereas

“Deletion Page Layout” is used when the user is going to perform delete

records operation as users don’t use field masking for “Delete Records”.

1. Go to the Setup → Object Manager tab

2. Enter “Object Masking” in the Quick Find box and press enter. Click on the

object named “Object Masking” in the search result.

3. Click on “Page Layout” as shown below in the image.

4. Click on the “Page Layout Assignment” button to add page layout.

5. User will find the below screen, there are three Record Types

1. Master

2. Delete Records

3. Mask Records

The user needs to Click on “Edit Assignment” to make changes.

6. Select column “Delete Records” and choose “delete-Object Masking

Layout” from the “Page Layout To Use” dropdown list and click on the Save

button.

7. After selecting the page layout “Delete Records”, the user can see the

change by adding an object masking record and going to the field masking

section. Users will not see the Field Masking section.

8. The user will see the below page after adding object masking. No field

masking section will appear.

9. Data Masker also has a page layout for pattern objects. To set the page

layout for pattern object, users have to follow the same steps as above and

select the appropriate pattern page layout for pattern object record types as

shown in the below screenshot.

Step 3: Add Your Own Masking
Patterns (Optional)
Patterns are nothing but a custom library of names, email, phone numbers

that can be used for the masking data. After the Data masking process, field

values in the records are updated with respect to the values associated with

the pattern record.

Data Masker Application comes with some sample pattern records. Users can

directly use these pattern records or can create their own.

Navigate to Pattern tab and Select ‘Patterns by Data Masker’ list view to see

sample pattern records provided by Data Masker Application.

There are total 8 sample patterns provided by Data Masker –

Pattern Name Data Type Action Type Value Preview

1 Email Library Email Regex data”[a-z]{4}[1-

9]{4}”@masker.com

datavpus5877@masker.com

2 Encrypted Number EncryptedString Regex “[2-9]{8}[0-9]{8}” 3258774489431380

3 Phone Number

(UK)

Phone Regex [0-9]{4} [0-9]{6} 6681 315413

4 Phone Number Phone Regex ([0-9]{3})[0-9]{3}-[0- (461) 461-1569

 (USA) 9]{4}

5 Regex Number Number Regex [0-9]{7} 5457148

6 First Name Female Text Custom List There approx 300

 comma-separated
 sample values provided
 in the Library e.g.
 Nicola, Karen, Fiona,

 Susan, etc

7 First Name Male Text Custom List There approx 600

 comma-separated
 sample values provided
 in the Library e.g.
 David, John, Paul,

 Mark, Jame, etc

8 Last Name Text Custom List There approx 300

 comma-separated

http://masker.com/
mailto:datavpus5877@masker.com

sample values provided

in the Library e.g.

Juniper, Justice, Justine,

etc

The procedure to create a new pattern record is as follows –

Step 1: In the Data Masker app, navigate to the “Patterns” tab .

Step 2: Now click on the “New” button.

Step 3: Select the type of patterns.

Users can create two types of Pattern records: List and Regex.

1. List – It is a set of Library containing noticeable random data which is used for

masking personally identifiable information. These libraries can be usually

used to mask fields of the type Text, Address. For Example – FirstName,

LastName,City, Country etc.

• To create a List, Select List as the record type and click on the Next button.

• Fill in all the details and Save the record.

• Pattern Name – Provide appropriate pattern name.

• Type – As the record type selected is List, the type will be auto-populated as

Custom List.

• Data Type – Select data type as per the requirement. The available data type

are as follows –

1. Currency

2. Date

3. Date/Time

4. Email

5. Number

6. Percent

7. Phone

8. Text

9. Text Area

10. URL

11. Encrypted String

• Value – This is the library containing different sets of recognizable values. For

e.g., If the user wants to Mask Country field then the Value field should be

populated with a set of different country names separated by a comma as

shown in the image below.

2. Regex – The regular expression which is used to generate data using defined

patterns. Basically, these are patterns used to match character combinations

in strings. This can be used to mask fields of the type Email, Phone, Text,

Numbers etc.

• To create Regex as a pattern, Select Regex as the record type and click on the

next button.

• Fill in all the details and Save the record.

o Pattern Name – Provide appropriate pattern name.

o Type – As the record type selected is Regex, the type will be auto

populated as Regex.

o Data Type – Select data type as per the requirement. The available data

type are as follows –

• Email

• Number

• Phone

• Text

• Text Area

• URL

• Encrypted String

• Value – In this user needs to define the pattern or sequence of how he wants

to mask a particular field. Considering Phone number as the field that needs

to be masked here is the sample REGEX for Phone number in USA format

([0-9]{3}) [0-9]{3}-[0-9]{4}

Once the record gets saved, the user can see the Pattern details and also the

preview field which shows the actual sample value of the Regex expression.

So the user can compare and verify whether the pattern value matches with

the business use case or not.

In this way, users can create more pattern records either of the type list or

Regex based on the requirement.

//This query will show the details of the users that WILL BE MASKED.

//Make sure to put all user ids that do not need to be masked in the SOQL query. Especially add user ids of Site guest

Integration & Platform Integration users.

//You can also use other criteria such as profile name, role or others that DO NOT CHANGE between Prod and Sandbo

//Do NOT use username as it changes between prod and sandboxes.

select id, name, username, profileid from user where Id not in (‘0054K000002hqbxQAA’, ‘0054K000002hqbxQAA’,’00

‘0054K000003PklrQAC’,

‘0054K000003PklvQAC’)

//Use your user record’s Id, not the ones provided here for example.

Step 5: Masking User Records
(Optional)
Step-by-step instructions (assumes an installed product with appropriate

permission sets assigned):

1. Initial configuration, test and validate: Do this in a Dev Sandbox first

a. Start by creating a SOQL to filter out users that do NOT need to be masked.

Test the SOQL from the workbench or other SOQL editors to make sure it

works well.

Note: This is a crucial step to get right, as any users not in this query will be

masked and inactivated.

2. Copy the filter criteria (Everything after the ‘where’ in the SOQL clause)

3. Navigate to Data Masker App Configuration and modify (or add) a

Configuration

//From the query above, the filter criteria is the following Id not in (‘0054K000002hqbtQAA’,

‘0054K000002hqbxQAA’, ‘0054K000003PkltQAC’, ‘0054K000003PklrQAC’, ‘0054K000003PklvQAC’)

4. Navigate to the configuration details view. Click the “New” button and

select the record type ‘ Mask Records’ and further add an object for “User” (if

one does not exist). Make sure to add the filter criteria as shown below.

Your completed record would look similar to this.

5. Navigate to Setup Users User Management Settings and enable

“Scramble Specific Users’ Data”.

6. Create a new mapping for the ‘User’ Object, and add the ‘Full Name’ field

for replacement with ‘Random’. This is all that is needed. Note: Data Masker

uses a Salesforce-provided API that will mask the entire user record,

inactivate it and no email or notification will be sent to the user.

7. Invoke Data Masker from ‘Configuration’ ‘Data Masking’ button

8. Select “Mask specific”.

9. Select the “User” object in the next screen and continue till the end of the

wizard to begin execution.

10. Validate that the execution was successful by navigating to the data

masker’s ‘Execution’ tab.

11. Navigate to the user record to validate that it was successfully anonymized

This concludes the masking of user records in a Salesforce Sandbox.

Optional: Configure in Production so that it gets automatically propagated to

full and partial copy sandboxes

Note: Data Masker is designed to not run in Production. We are configuring it

here so that all Sandboxes created and refreshed after this step will always

have Data Masker as part of the Sandbox image. Full and partial copy

sandboxes will also get this configuration. Make sure your Sandbox templates

have our Objects ‘Configuration, Object Masking & Field Masking’ selected.

However, Data Masker mappings are considered data and will not migrate to

Dev and Dev Pro sandboxes. For those, you will have to manually create the

configuration/mapping above.

